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Abstract

There are several sensitivity analysis procedures which have been considered by
Tanaka and Odaka (1989 a, b, ¢) to investigate the phenomena of how a small change
of data affects the outcome of factor analysis. Amongthem arethe principalfactoranalysis
(PFA), maximum likelihood factors analysis (MLFA) and least square factor analysis
(LSFA). This motivates us to showthat a similar technique can also be utilized to develop
the sensitivity analysis in alpha factor analysis (AFA). Some examples are explained to
illustrate the present procedure and a comparison is made in particular with the cases of
PFA and MLFA.
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1. Introduction

In this study, a similar method used by Tanaka and Odaka (1989 a, b, c) was applied to develop the

sensitivity analysis procedure in alphafactor analysis (AF A, Kaiser and Caffrey, 1965) whichisbased upon
the psychometric concept of generalizability. The basic idea of AFA is to determine the common factor
Jf in such a way that they have maximum correlation with the corresponding universe common factors.
Alpha factors, like ML factors, have the property of invariance for scale transformation, that is, the same
factors are found regardless of the units of measurements of the observable variables and loadings are
proportional to scaling constants.

Our main objective in this study is to evaluate the influence of a small change of data on the values
of the unique variance matrix D and the matrix 77=LL". Itisinteresting to note that the influence function

I(x ;Zq A, v,vT)can be used effectively to develop a sensitivity analysis procedure in AFA as well asin

PFA‘and MLFA. Comparison is made with PFA and MLFA with respect to their sensitivities to small
changes in data.

AFA is one of the popular methods of factors analysis. In facts, it is often used by research workers
including psychologists, and is implemented in major statistical packages such as SAS and SPSS. There
are some fields in biometry such as psychiatry which have similar conditions as psychology to be natural
to asssume underlying assumptions of AFA. Therefore, we consider that it is worth to study AFA and
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develop aprocedure of sensitivity analysisin AFA, evenif we already have such procedures inPFA,MLFA
and LSFA.

2. Alpha Factor Analysis

Let us assume the ordinary factor analysis (FA) model for a p x 1 observation vector x given by

x=p+Lf+e (1)

where p is the mean vector, L is a p x ¢ (¢ < p) factor loading matrix, fis a ¢ x 1 common factor score
vector, and e is a p x 1 unique factor score vector. And also, we assume

E(f)=0, E(e)=0
E(ff7)=1, E(e')=4, E(fe')=0

A denoting a diagonal matrix. When the assumed model holds, the covariance matrix T of the random

vector x is expressed in terms of the p x ¢ loading matrix L and the unique matrix p x p diagonal matnx
A as

T=LLT+A (2)

which isknown as the common factor decomposition. Thatis, the covariance matrix Z of xisdecomposed -
into two parts, one explained by common factors and the other explained by unique factors. A number

of methods have been proposed for estimating L and A from the observed £Z. Among them are PFA,
MLFA, and LSFA.

In AFA, the generalized Kuder-Richardson reliability coefficient

a=-P || 2 Hw | ®)
p-1l ¥ (E-aw]| -

is maximized to establish a model which represents universe batteries, where H = diag(Z-A) is called
communalities. We can obtain this by solving the generalized eigenvalue problem such

[(E-A)-AH]w=0 ‘ (4
which amounts to obtaining eigenvalues and eigenvectors of the following ordinary eigenvalue problem

[H% E-aHH_ ,u]g =0, v=H%w ©)

where V| = (v,,...,v) is a matrix of unit-length column eigenvectors associated with the ¢ largest
elgenvalues l .. 1 and L = diag(/ ..., ;) represents the diagonal matrix of these values. From (3), the
relationship between the engenvalue I and the coefficient of generalizability a_is expressed by

__p |, 1
"‘",,_1[‘ ﬂ».} ©)

If A or H is known, L and A are obtained directly using the above procedure. However, if it is

unknown, we must apply an iterative procedure by taking some initial trial for 4 or A. In this way, the
solution satisfies the following determining equations.




R =Z-A @)

H¥%R HY = VA VT + V,A,V: spectral decomposition (8)
L= WAV AE T = L7 = Y Ayt i (]((9);
A=diag(Z-T")

Note that PFA and MLFA have similar determinating equations with #*2in (8) and (9) replaced by
I and A7, respectively. Thus, we can regard that these three procedures commonly try to decompose
the variances and covariances due to common factors £ -A , but have d:fferent methods of scaling before
decomposition. Thoughthe variables are not scaled in PFA based onthe covariance matrix, they are scaled
by the square roots of their variances in PFA based on the correlation matrix, of only the common portion
of their variances in AFA and only of the unique portion of the variances in MLFA. The three methods

with the exception of PFA based on the covariance matrix have the property invariance for scale-
transformation.

3. Influence functions for the common and unique variance
matrices

Our concern here is to study the change of the outputs A and 7* = LL” when a small change  to

L + eXMisintroduced to those determining equations. To do this, we replace the unperturbed Z, A, R*
and 7* in determining the equations by the perturbed counterparts £ + X A + gAM), R+eR*0 and
T* + eI™*O respectively and compare the first order terms of €. Then we apply the lemma ontheinfluence
function for £2 A v,y which was derived by Tanaka (1988), we obtained the following equations. When
the perturbation FOF= (1 -€)F +ed_(F: unpertubed cdfof x; § : the cdf of a unit point mass at x) is
introduced on the distribution function the coefficients of g, i.e Zl") A™M and T*®, denote the influence
functions or influence curves for I, A and T* respectively. It is known that £O is expressed as
T0=(x - m)(x - m)" -
. R'® — 30 _ A0 an

T°0 VR'"’H%TH% + VH%TH%R,;"
-ZZ [/R HARH % + UH AR AR,

=1 r=¢

- H%R'(”H%]v,H%g,g,TH%

B D RNEREN PP

s=1 r=g+1
+ VHAR AR - H%R'“’H-%]\_z,
(H%v v+ Hy vTH%)

. 2
AV = diag (TP - T°M) ‘ 83;

where the subscript “D” indicates diagonal. Now considering that the relationship
W~ R
T,O=R",j=1,.p (14)
holds using equations (11) and (13) we can evaluate the system of equations (11) through (13) in the

following four general steps to derive the influence functions A®™ and 7*(®, Note that the elements of

vectors and matrices are denoted by attaching the subscripts to the characters indicating the vectors d
matrices.
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Step 1. Calculate X }k(') and obtain R}k‘(') for jzk by R}k'(')=2ﬁ(‘), J#k

Step 2. Solve the simultaneous linear equations for R; *(s as follows.

{1‘(H_%TH%) } h Z"m .(])—ZZ (z)uR:'(l), j=1,..p

i=] i'=i
iz’

where
q q 1
Ay = Z,Z,{_Ev (Qv), ——(QV)UV,,+H vV, }H”vﬁv
q q 1
+2Z Zx:(}"s - Xr)—l{-ivu(QV)ir - E(QV),J V,, + H v,V }H”V”vjr
s=1 r=q+1

q9 9
V
(J)u Z Z H vuvlrv/sv/r

.tlr=

+2Z Zx,(x, -AM)'HEHEV v vV,

isir” js” jr
s=1 r=q+1

Q=H*R'H*

Step 3. Calculate A by AM=R "V - £O j=1,..p.
Step 4. Calculate ﬂ“)forﬁtk by equatlon (12) using RV and A/ o,

Now, one of the advantages of this method is that we only need to evaluate a system of linear equations
with p unkowns (n + 1) times (once for considering the whole data and n times for the data with one
observation omitted) compared to applying the usual factor analysis (# + 1) times. Furthermore, as cited
by Tanaka and Castano-Tostado (1990) that it is sufficient to solve the system of equations
(1+p(p+1)/2) times instead of # + 1 times. Note that the above procedure, the theoretical influence
functions are defined in terms of population parameters A and T* = LL, although in actual analysis it is
practical to use sample versions of empmcal influence curves (EIC) A® and 7°® which are calculated by

substituting § = n“z &, - x)(x -x)" and §O = (y. — x)(x, - x)7 - S into Z and I in the above
procedure.

4. Numerical Examples

Example 1. Stock Price data

As an illustration of our procedure we applied our method to the set of stock-price data (Johnson,
R. and Wichern, D., 1988, Table 8.1). It consists of 100 weekly rates of return for five stocks (Allied
Chemical, DuPont, Union Carbide, Exxon, and Texaco). The weekly rates of return are defined as (current
Friday closing price - previous Friday closing price)/(previous Friday closing price) adjusted for stocks
splits and dividends. The observations in 100 successive weeks appear to be independently distributed
but the rates of return across stocks are correlated since as one expects, stocks tend to move together in
response to general economic conditions. Table 1 shows the result of the factor analysis with AFA
assuming a two factor model. The varimax rotated loadings are displayed in Table 1 along with the unique
variances. The rotated loadings indicate that the chemical stocks (Allied Chemical, DuPont, and Union
Carbide) load highly on the first factor, while the oil stocks (Exxon and Texaco) load highly on the second
factor. Thetwo rotated factors suggest the difference between the industries. Although itis very difficult
to label these factors, we can say that factor 1 respresents unique economic forces that cause chemical
stocks to move together while factor 2 appears to represent the economic condition affecting oil stocks.
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Next, to investigate the influence of each individual, we calculated the empirical influence curves AM,
7+ and scalar-valued measures || A®|| and || 7+®|| by using the proposed procedure. Similarly like in the
studies of Tanaka and Odaka (1989 a, b) the Euclidean norm for A" and 7*( are used as influence
measures to study the influence behavior of each observation. Figure 1 shows the index plots of these
summarized scalar-valued influence measures indicating the influence of every observation. The visual
inspection of the index plots of the 100 weekly ratess of return indicates that observation number 56 is
the most influential followed by observation number 13 for both proposed measures.

N
On the other hand, Table 2 shows the result of the AFA for the data with 56th observation omitted.
It is very clear that the influence of the omission of this observation is not small as revealed in the loadings
of the first and second variables. The remarkable point is that the omission of this observation causes an
improper solution as indicated by the unique variance of the second variable.

Table 1. Result of the AFA
(Stock-Price Data, n=100; two factor model)

Variable Factor loading ‘Factor loading Unique Var.
1 0.5919 0.3663 0.5154

2 ' 0.8551 0.1622 0.2425

3 0.6427 0.3569 0.4596

4 : 0.3632 0.5116 0.6063

5 0.2073 . 0.8771 0.1877

(judgement of convergence = 0.00001; 48 itcrations)
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Fig. 1: Index plots of || AM|| and || 7*D|| (Stock -price data)
Example 2. Audiometric data (Jackson, J.E. 1991, Table 5.1)

The second example with audiometry, a study carried on within the Eastman Kodak Company
involving the measurement of hearing loss. It was conducted to distinguish the differences between normal
and induced hearing loss. The data consists of n = 100 males, age 39 who were made to measure their
hearing level by means of an instrument called audiometer wherein the threshold measurements are
calibrated in units called decibel loss in comparison to a reference standard for that particular instrument.
Observations are registerd one at a time for a number of frequencies. The frequencies used are 500 Hz,



Table 2. Result of the AFA
“(Stock-Price Data, n=99; observation 56 omitted)

Variable Factor loading  Factor loading Unique Var.
1 0.4987 0.4724 0.5281
2 0.9819 0.1921 0.0001
3 0.5539 0.4977 0.4455
4 0.2633 0.6098 0.5588
5 0.1632 0.7736 0.3748

(Note: In this case the iterative process went into the improper region, i.e A ,, <0.Table 2 shows the
converged values of the iterative process with fixed. A - ie. A _— 0.0001.).

1000 Hz, 2000 Hz, and 4000 Hz which results in an eight-variable problem, considering two ears. The
different factor loadings of the eight variables with their respective unique variances utilizing a two factor
model are seen. m Table 3. The result shows that variables 3, 4, 7 and 8 load heavily on the first factor.
Onthe other hand variables 1,2, 5 and 6 load highly on the second factor. The interpretation of the factor
loadings is the most stralghtforward if each variable loads highly on at most one factor, and if all the factor
loadings are either large and positive or near zero, with few intermediate values. the variables then split
into disjoint sets, each of which is associated with one factor, and perhaps some variables are left over.
In this example, the two factors suggest a contrast between the high frequencies (2000 Hz and 4000 Hz)
and the low frequencies (500 Hz and 1000 Hz) with respect to hearing level. We may regard the first factor
as “high frequency” effect and the second factor as the “low frequency” effect. It is well known in the

case of normal having that hearing loss as a function of age is first noticeable in the higher frequencies.

To study the influence pattern of every observation, we calculated the empirical influence curve AC )
rT'(‘) and their corresponding scalar-valued measures. The index plots of || AY]| and || 7*|| are shown i m
igure 2. Based on this figure, we are able to find the influential observations such as respondent number
75 exhibiting a relatively large influence on A as compared to other observations. Table 4 shows the
estimated L and A for the data set without the 75¢h observation, which is the most influential on A®. As

seen from the table, the estimates of the unique variances differ considerably from those for the whole data
especially for variables 1, 2 and-5.

Table 3. Result of the AFA
(Audiometric Data, n=100; two factor model)

Variable Factor loading Factor loading  Unique Var.
1 0.1635 0.8494 0.2518
2 0.2848 0.8002 0.2786
3 0.6464 0.3792 0.4384
4 0.7171 0.1025 0.4796
5 0.0586 0.7378 0.4521
6 0.2718 0.7935 0.2965
7 0.5838 0.2554 0.5940
8 0.7240 0.0403 0.4742

(judgement of convergence = 0.00001; 22 iterations)
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- Fig. 2: Index plots of | | A® || and || 7O || (Audiometric data)

A

~ Table 4. Result of the AFA
(Audiometric Data, n=99; no. 75 omitted; two factor model)

Variable - Factor loading * Factor loading Unique Var.
1 0.1722 0.8332 0.2761
2 0.3131 0.8148 0.2380
3 0.6592 0.3765 0.4238
4 0.7192 ©0.0935 10.4740
5 0.0223 0.7928 10.3709
6 0.2805 0.7826 0.3038
7 0.5831 02518 0.5965
8 0.7180 0.0349 0.4833

(judgement of convergence = 0.000001; 21 iterations)

5. Discussion

In this study, we have proposed a method for obtaining A® and 7@ representing the empirical
mﬂuence functions for the two components A, T of the common variance decomposition.

The second point of attention is the numerical verification of the validity of the quantities A or
EIC,.(AI.I.) for both data. To accomplish this purpose, we disregard a single observation in turn, perform
AFA n times and calculate A ;,, which denotes the estimate of A based on the sample with the i - th
observation deleted. Then the sample influence curve SIC s is evaluated by using the relation

SIC, = -(n-1)(A,, - ), el (15)

and compare them with EIC(A)’s based on the present procedure. Then, we draw the scatter diagrams
of EIC(A) versus SIC (A) of the respective norms. As an illustration, Figure 3 gives us a pciture of the
scatter diagrams of EIC versus SIC for the Euclidean norm using the stock price-data and audiometric
data. as suggested form these figures, the correspondence is good enough for us to conclude that the
quantities EIC;’s based on the present method can be used practically instead of SIC’s. Besides, in terms

K
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Fig. 3: Scatter diagram of EIC (horizontal) versus SIC (vertical) for the Euclidean norm:
(a) Stock-price data; (b) Audiometric data

of computing time SIC, requires much time to compute than EIC_. In other words, we can deduce that
EIC canbe used effectlvely for detecting influential observations since it has a very hlgh correlation with
SIC which has the clear “leave-one-out” interpretation. In fact, we also observed a similar scenario as
in the case of PFA and MLFA (Tanaka and Onada, 1989 a, b). Once EIC is obtained, it can be used for
detecting influential subsets of observations as discussed by Tanaka, Castano-Tostado and Odaka (1990)
and Moon, Yanagi and and Tanaka (1992).

Next a comparison of AFA is made with PFA and MLFA based on the scalar-valued measures || A")||
and|| 7®|| for both examples. Inthe case of stock data, Figure 4 shows the graph of the norm of A using
PFA, MLFA and AFA. As displayed from the figure, we can see that alpha factor solution is fairly close
to principal factor and maximum likelihood analysis procedure based on the proposed measures. This
example illustrates that sensitivities to smaller changes of data are almost equal in the three procedures.
However, using the audiometric data set, the scatter diagram in Figure 5 gives us a different picture. As
seen from the figure, AFA procedure is somewhat different compared to MLFA and PFA solution based
on the norm of A"”. Notice also that the points are located almost at random for the three procedures.

Note that in the above four steps, the influence funtions A® and 7 are both linear functions of T,
From this property, the influence of an arbitrary point can be decomposed into a finite number of
components which will provide a more efficient tool for comparison of the different estimation methods.

Although, we did not apply it in out present work, it is worth mentioning that this will be our next target
of study.
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Fig. 5: Scatter diagram of MLFA versus PFA, AFA versus PFA and AFA versus MLFA based on Euclidean norm:
(audiometric data)
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