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Abstract

Thereareseveral sensitivityanalysisprocedures whichhavebeen considered by
Tanakaand Odaka(1989 a, b, c) to investigate the phenomena of how a small change
ofdataaffectstheoutcomeof factoranalysis. Amongthemaretheprincipalfactoranalysis
(PFA), maximum likelihood factors analysis (MLFA) and least square factor analysis
(LSFA). Thismotivatesus to showthat a similartechnique canalso be utilizedto develop
the sensitivityanalysis in alpha factor analysis(AFA). Some examples are explained to
illustratethe presentprocedure and a comparison is made in particularwith the casesof
PFA and MLFA.
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1. Introduction

In this study, a similar method used byTanakaand Odaka(1989 a, b, c) was applied to develop the
sensitivity analysis procedureinalphafactoranalysis (AFA,KaiserandCaffrey, 1965)which isbasedupon
the psychometric concept of generalizability. The basic idea ofAFA is to determine the common factor
f in such a way that they have maximum correlation with the corresponding universe common factors.
Alphafactors, likeML factors, havethe propertyof invariance for scaletransformation, that is, the same
factors are found regardless of the units of measurements of the observable variables and loadings are
proportional to scaling constants.

Our main objective in this study is to evaluatethe influence of a small changeofdata on the values
ofthe uniquevariance matrix D and the matrix r=LLT. It isinteresting to notethat the influence function
I(!.; :Lq

- AsYri)can be used effectively to develop a sensitivity analysis procedure in AFAas well as in
PFA andMLFA. Comparison is made with PFA and MLFA with respect to their sensitivities to small
changes in data.

AFA is one ofthe popularmethods offactors analysis. In facts, it isoftenused by research workers
including psychologists, and is implemented in majorstatistical packagessuchas SAS and SPSS. There
are somefields inbiometry such as psychiatry which havesimilar conditions as psychology to be natural
to asssume underlying assumptions of AFA. Therefore, we consider that it is worth to study AFA and
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develop aprocedure ofsensitivity analysis inAFA,evenifwealready havesuchproceduresinPFA, MLFA
and LSFA. . .

2. Alpha Factor Analysis

Let us assume the ordinary factor analysis (FA) model for a p x 1 observation vector ~ given by

:! =JJ + Lf+e
. - --' (1)

where1! is the mean vector, L is ap x q (q <p) factor loading matrix,[is a q x 1 common factor score
vector, and ~ is ap x 1 unique factor score vector. Andalso, we assume

E(f) =0, E(~) =0

E(ffT)=/, E(eeT)=~, E(f~T)=O

~ denoting a diagonal matrix. When the assumed model holds, the covariance matrix~ of the random
vector! is expressed in terms ofthep x q loading matrixL and the unique matrixp xp diagonal matrix
~ as

•

which isknown asthecommon factordecomposition. Thatis, thecovariance matrix ~ of ~ isdecomposed .
into two parts, one explained by common factors and the other explained by uniquefactors. A number
of methods have been proposed for estimating L and ~ from the observed E. Among them are PFA,
MLFA, and LSFA.

In AFA, the generalized Kuder-Richardson reliability coefficient

a = -.l!.-[I- w
T

Hw ]
p-l WT(~_~)~

(2)

(3)

•

•L.

is maximized to establish a model which represents universe batteries, where H = diag(~-~) is called
communalities. We can obtain this by solving the generalized eigenvalue problem such

[(~ - ~)- A.H]~ = 0 (4)

which amounts to obtaining eigenvalues andeigenvectors of the following ordinary eigenvalue problem

[H-~(~-~)H-J{ -AJ]~=O, ~=H-Xw (5)

where VI = (~l"'" v) is a matrix of unit-length column eigenvectors associated with the q largest
eigenvalues II ...,/ ~d L

I
= diag(/1 ...,1) represents the diagonal matrix of these values. From (3), the

relationship betw~en the eigenvalue Is ind the coefficient ofgeneralizability Qs is expressed by

•

a =-"!!""'-[1- _1]
S P -1 ls (6)

If ~ or H is known, L and ~ are obtained directly using the above procedure. However, if it is f

unknown, we must apply an iterative procedure by taking someinitial trial for H or e. In this way, the
solution satisfies the following determining equations.
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(8)
(9)

(10)

(11)
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•

•
I L

RO =L -.1
H-~ROH-~ = V. A v.T + vA v:T : spectral decompositionI I I 2 2 2

L =HJh.VIA~, r =LLT =HJh.~ArtHJh.
.1 =diag(L - rO)

Note that PFA andMLFA havesimilar determinating equations withH·112 in (8) and (9) replaced by
I and .1-112, respectively. Thus, we can regard that these three procedures commonly' try to decompose
the variances and covariances due to common factorsL -.1, but havedifferent methodsof scaling before
decomposition. Thoughthe variables arenot scaled inPFA basedonthecovariance matrix, theyarescaled
bythe squareroots of theirvariances inPFA basedon the correlation matrix, ofonlythe common portion
of their variances in AFA and onlyof the unique portion of the variances in MLFA. The three methods
with the exception of PFA based on the covariance matrix have the property invariance for scale
transformation.

3. Influence functions for the common and unique variance
matrices

Our concern here is to study the change of the outputs .1 and 7'* =LLT when a small change L to
L + eL(I) is introduced to those determining equations. To do this, we replacethe unperturbed L,~, R*
and 7'* in determining the equations by the perturbed counterparts L + EL(I), ~ + E~(I), RO+ERO(I) and
7'* + E7'*(I), respectively andcompare thefirst order termsofs. Thenweapplythelemma ontheinfluence
function for L:IAs!'si'_which wasderived byTanaka(1988), we obtained the following equations. When
the perturbation F ~ F = (1 - E)F+ Edx (F: unpertubed cdf of x; 0: the cdf of a unit point massat !:) is
introduced On the distribution function, the coefficients of E, i.e Lt.), .1(1) and ]"'*(1), denote the influence
functions or influence curves for L, .1 and 7'* respectively. It is known that L(I) is expressed as
L(lb(!: - m}(!: - m}T - L

II

•

TO(I) - 1/ Ro(lIH-XTHX + 1/HXTH-XRocll
- /2 D /2 . D

_~~ T[I/RoCllH-XRoH-X I/H-X Ro H-X RO('1L..J L..J Y... 72 D + 72 D
r-I r=9

- H-Jh.R°(l)H-X]y"rHJh. y".~~HJh.

- ~ ~ A (A -A )-1 yT[ 1/ RO(I) H-XRoH-XL L..J s s r -. 72 D
r-I r=9+1

+ 1/ H-~ROH-XRO(I)_H-~R°(l)H-X]y
72 D _r

(H~ Y..s~; +H~~r~~HJh.)

~(I) = diag(L (I) - r» (12)
(13)

where the subscript "D" indicates diagonal. Now considering that the relationship
°(1) - °(1) • _ ( 14)Tjj - Rjj ,j - 1,.o.,p

holds using equations (11) and (13) we can evaluate the system of equations (11) through (13) in the
following four general steps to derive the influence functions NI) and ]"'*(1). Note that the elements of
vectors and matrices are denotedby attaching the subscripts to the characters indicating the vectors 1d
matrices.
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Step 1. Calculate "i/) and obtain Rjk"(I) for j:i:-k by Rjk"(I)="i/), ftk

Step 2. Solve the simultaneous linear equations for R
jj
"(I..,S as follows.

{ }

p p p-x X *(1) *(1) _ *(1) .
1-(H TH ). Rjj - La(j)i~; - LLb(j)i;'~;' , J=I, ...,p

JJ ;=1 ;=1 ;'=;
i~;'

where

•

St 3 C I I t .1 (I) b .1 (lbR *(1) "i (I) '-1ep . a cu a e..i y ii - jj - ii J- ,...,p.
Step 4. Calculate r(l)for jek by equation (12) usingR..(I) and .1(1).

D D

Now, one ofthe advantages ofthis method is that we onlyneedto evaluate a systemof linearequations
withp unkowns (n + 1) times (once for considering the whole data and n times for the data with one
observation omitted)compared to applying the usual factor analysis (n + 1)times. Furthermore,as cited •
by Tanaka and Castano-Tostado (1990) that it is sufficient to solve the system of equations L

(1+p(p+ 1)/2) times instead of n + 1 times. Note that the above procedure, the theoretical influence
functions are defined in terms of population parameters Ii and 1'*=LLT

, although in actual analysis it is
practical to use sample versions of empirical influence curves(EIC) ~(l) and r(l) whichare calculated by
substituting S = n-1L~=l (Jj - i)C!j - ~)T and s» = (:r. - !)(!Ii - J)T - S into "i and "i(l) in the above
procedure.

4. Numerical ExampIes

Example 1. Stock Price data

As an illustration of our procedurewe applied our method to the set of stock-price data (Johnson,
R. and Wichern, D., 1988, Table 8.1). It consists of 100weekly rates of return for five stocks (Allied
Chemical, DuPont,Union Carbide, Exxon, andTexaco). Theweekly ratesofretum aredefined as(current
Friday closing price - previous Friday closing price)/(previous Fridayclosing price) adjusted for stocks
splits and dividends. The observations in 100 successive weeks appear to be independently distributed
but the rates of return across stocksare correlated since as one expects, stocks tend to movetogether in
response to general economic conditions. Table 1 shows the result of the factor analysis with AFA
assuming a two factormodel. Thevarimax rotatedloadings aredisplayed inTable 1alongwiththe unique
variances. The rotated loadings indicate that the chemical stocks (Allied Chemical, DuPont, and Union
Carbide) loadhighly on thefirst factor, while the oilstocks(ExxonandTexaco)loadhighly on the second
factor. Thetwo rotatedfactorssuggestthe difference between the industries. Although it isverydifficult
to label these factors, we can say that factor 1 respresents unique economic forces that cause chemical
stocks to movetogether while factor 2 appearsto represent the economic condition affecting oil stocks.

•
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Next, to investigate the influence ofeachindividual, wecalculated theempirical influence curves .1(1),
],0(1) and scalar-valued measures 11.1(1)11 and II t°(l)11 by usingthe proposed procedure. Similarly likein the
studies of Tanaka and Odaka (1989 a, b) the Euclidean norm for .::\(1) and ]'*(1) are used as influence
measures to study the influence behaviorof each observation. Figure 1 shows the index plots of these
summarized scalar-valued influence measures indicating the influence ofevery observation. The visual
inspection of the index plots of the 100 weekly ratess of return indicates that observation number56 is
the most influential followed by observation number 13 for both proposed measures.

'---
On the other hand, Table2 shows the resultof the AFA for the data with 56th observationomitted.

It isveryclearthat the influence of the omission of thisobservation is not small as revealed inthe loadings
of the first and secondvariables. The remarkable point is that the omission ofthis observationcauses an
improper solution as indicated by the unique variance of the second variable.

Table 1. Result of the AFA
(Stock-Price Data, n=100; two factor model)

(judgement of convergence =0.00001; 48 iterations)

•• 45 -

Variable
1
2
3
4
5

Factor loading
0.5919
0.8551
0.6427
0.3632
0.2073

.Factor loading
0.3663
0.1622
0.3569
0.5116
0.8771

56

Unique Var.
0.5154
0.2425
0.4596
0.6063
0.1877

•
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Fig. 1: hula plots of 11.1(1) II and II f*(I) II (Stock -pricedata)

Example 2. Audiometric data (Jackson, J.E. 1991, Table 5.1)

WE

•

The second example with audiometry, a study carried on within the Eastman Kodak Company
involving themeasurement ofhearing loss. It wasconductedto distinguish thedifferences betweennormal
and induced hearing loss. The data consists of'n = 100 males, age 39 who were made to measure their
hearing level by means of an instrument called audiometer wherein the threshold measurements are
calibrated inunitscalled decibel loss incomparison to a reference standard for that particularinstrument.
Observations are registerd one at a time for a number of frequencies. The frequencies used are 500 Hz,



Table 2. Result of the AFA
.(Stock-Price Data, 0=99; observation 56 omitted)

Variable Factor loading Factor loading Unique Var.
1 0.4987 0.4724 0.5281
2 0.9819 0.1921 0.0001
3 0.5539 0.4977 0.4455
4 0.2633 0.6098 0.5588
5 0.1632 0.7736 0.3748

(Note: In this case the iterativeprocess went into the improper,.region, i.e ~22<O.Table 2 showsthe
converged valuesof the iterativeprocess with fixed. ~22' i.e. ~22 = 0.0001.) .

1000Hz, 2000 Hz, and 4000 Hz which results in an eight-variable problem, considering two ears. The
different factor loadings of the eightvariables withtheirrespective unique variances utilizing a two factor
model are seen.in Table3. The result shows that variables 3, 4, 7 and 8 load heavily on the first factor.
Ontheother hand, variables 1,2, 5and6 loadhighly onthesecondfactor. The interpretation of thefactor
loadings is the moststraightforward ifeachvariable loadshighly on at mostone factor, and ifall the factor
loadings are either large and positive or near zero, with few intermediate values. the variables then split
into disjoint.sets, each of which is associated with one factor, and perhaps some variables are left over.
In thisexample, the two factors suggesta contrast betweenthe highfrequencies (2000 Hz and 4000 Hz)
andthelowfrequencies (500Hzand 1000Hz) withrespectto hearing level. Wemayregardthefirstfactor
as "high frequency" effect and the secondfactor as the "low frequency" effect. It is well known in the
case of normal having that hearing loss as a function of age is first noticeable in the higherfrequencies.

To studythe influence patternof everyobservation, wecalculated the empirical influence curve ~(I),
r-(I) and their corres~onding scalar-valued measures: The i~dex plots o,f II ~(I)II and II r(l)lI are shownin
figure 2. Basedon this figure, we are ableto flnd the influential observations such as respondentnumber
75 exhibiting a relatively large influence on 11 as compared to other observations. Table 4 shows the
estimated Land 11 for the data set without the 75th observation, whichis the most influential on ~(J). As
seenfrom the table, theestimates of theunique variances differ considerably fromthose for the wholedata
especially for variables 1,2 and·5.

•

•

•\

Table 3. Result of the AFA
(Audiometric Data, n=100; two factor model)

Variable Factor loading Factor loading
1 0.1635 0.8494
2 0.2848 0.8002
3 0.6464 0.3792
4 0.7171 0.1025
5 0.0586 0.7378
6 0.2718 0.7935
7 0.5838 0.2554
8 0.7240 0.0403

(judgement of convergence =0.00001; 22 iterations)

Unique Var.
0.2518
0.2786
0.4384
0.4796
0.4521
0.2965
0.5940
0.4742

•

•
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. Fig. 2: Indexplots of II &(1) II and II '[-(1) II (Audiometric data}

tge

Table 4. Result of the AFA I

(Audiometric Data, n=99; no. 75 omitted; two factor model)

Factor loading Unique Var,

•~

Variable
I
2
3
4
5
6
7
8

Factor loading
0.1722
0.3131
0.6592
0.7192
0.0223
0.2805
0.5831
0.7180

0.8332 .
0.8148
0.3765
0.0935
0.7928
0.7826
0.2518
0.0349

0.2761
0.2380
0.4238

·0.4740
'0.3709
0:3038
0.5965
0.4833

(judgement of convergence = 0.000001; 21 iterations)

5. Discussion

In this study, we have proposed a method fQr obtaining ~(J) and '[-(1) representing the empirical
• influence functions for the two components 11(1), T' of the common variance decomposition.

Th~ second point of attention is the numerical verification of the validity of the quantities &(I,~ or
EIC

i(I1
..) for both data. To apcomplish this purpose, we disregard a single observation in tum, pe;/orm

AFA n
Jl
times and calculate l1(i)' which denotes the estimate of 11 based on the sample with the i - th

observation deleted. Then the sample influence curve SIC.'s is evaluated by usingthe relation
A A I

SICi =-en -1)(I1(i) -11), i =1, ...,n (15)

and compare themwith EICj(l1)'s basedon the present procedure. Then, we draw the scatterdiagrams
ofEIC;(I1) versus SIC;(I1) of the respective norms. As an illustration, Figure 3 gives us a pciture of the
scatter diagrams ofEIC versus SIC for the Euclidean norm using the stock price-data and audiometric
data. as suggested form these figures, the correspondence is good enough for us to conclude that the
quantities EICj's basedon the presentmethod can beusedpractically instead ofSICj's. Besides, interms

•
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Fig. 3: Scalier diagram of EIC (horizontal) versus SIC (vertical) for the Euclidean norm:
(a} Stock-price data,' (b) Audiometric data

of computing time SIC
i
requires much timeto compute thanEICi . In other words, we can deducethat

EIC canbeused effectively for detecting influential observations since it hasa veryhigh correlation with
SICwhich has the clear"leave-one-out" interpretation. In fact, we also observed a similar scenario as
in the caseofPFA andMLFA(Tanakaand Onada, 1989a, b). OnceEIC is obtained, it can be used for
detecting influential subsets ofobservations asdiscussed byTanaka, Castano-Tostado andOdaka(1990)
and Moon, Yanagi and and Tanaka(1992).

Nexta comparison ofAFAismade withPFAandMLFAbasedonthe scalar-valued measures 1I.;i(l)1I
and]r(I)1I forbothexamples. In the caseofstockdata,Figure4 shows thegraphofthe normof ~(I) using
PFA, MLFA and AFA. As displayed from the figure, we can seethat alpha factor solutionis fairly close
to principal factor and maximum likelihood analysis procedure based on the proposed measures. This
example illustrates that sensitivities to smaller changes of data are almost equal in the three procedures.
However, using the audiometric data set, the scatter diagram inFigure5 gives us a different picture. As
seen from the figure, AFA procedure is somewhat different compared to MLFA andPFA solution based
on the normof fj,,(I). Notice also that the points are located almost at random for the three procedures.

Note that intheabovefour steps,the influencefuntions ~(I) and r'" arebothlinear functions of L(I).

From this property, the influence of an arbitrary point can be decomposed into a finite number of
components which will provide amoreefficient tool for comparison of the different estimation methods..
Although, we didnot apply it inout presentwork, it isworth mentioning that this will be our nexttarget
of study.

•1
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Fig. .4: Scatter diagram of MLFA versus PFA, AFA versus PFA and AFA versus MLFA based Euclidean norm:
(Stock-price data} ,
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Fig. S: Scatter diagram ofMLFA versus PFA, AFA versus PFA and AFA versus MLFA based on Euclidean norm:
(audiometric data)
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